If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20q^2-13q-21=0
a = 20; b = -13; c = -21;
Δ = b2-4ac
Δ = -132-4·20·(-21)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-43}{2*20}=\frac{-30}{40} =-3/4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+43}{2*20}=\frac{56}{40} =1+2/5 $
| 4p-3p=8 | | 18k+5k-7k-6k=20 | | 2k^2+4k=5 | | 10m-5m=-15 | | 3x+15=35x-2 | | 4s+6s-4s=18 | | 8x-151=2x-7 | | 7+m/8=m+12/4 | | F(-5)=10-3x | | 2f+(-4)=18 | | x+8÷3=5 | | 3/4(x+8)=1/3(x+2.7) | | 16a+a-8a-6a=18 | | 2x-x-1=17 | | -.5m+5=25 | | 2x^2-780x+44600=0 | | 3a-16=5a+24 | | 16r-12r-r-2=10 | | 4/5y+y=30 | | 8x=x-81 | | 8m-4m=20 | | 7q-q+1=7 | | 10s+s-4s+1=15 | | 7t+4t-2t-7t=12 | | 3(2n-5)-4n=-27 | | 4x12=18 | | 17k-13k+5k=9 | | 6t+t-7t+t+4t=15 | | 10c+4c-7c-6c=19 | | (X+5)3=(7x-2)5 | | 10x-4=2x-10 | | 5x+7+x=31-2x |